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Abs t rac t  

Localization is a  critical issue in mobile robotics. If the  robot  does  not know  where 
it is, it, cannot effectively plan  movements,  locate objects, or reach  goals. In this 
paper, we describe  probabilistic self-localization techniques for  mobile robots  that  are 
based on the  principal of maximum-likelihood  estimation. The basic  method is to 
compare  a map generated at  the  current  robot position to  a previously  generated  map 
of the environment to prohabilistically maximize the agreement between the  maps. 
This  method is able  to  operate in both indoor and  outdoor  environments  using  either 
discrete  features or an occupancy  grid to represent the world map.  The  map may be 
generated using any  method  to  detect  features  in  the  robot's  surroundings, including 
vision, sonar, a d  laser range-finder. A global  search of the pose space is performed that 
guarantees  that  the best  position  in  a  discretized pose space is found  according to  the 
probabilistic: map agreement  measure. In addition,  fitting  the likelihood  function  with 
a  parameterized  smface allows both subpixel  localization and  uncertainty  estimation  to 
be  performed.  The  application of these  techniques  in  several  experiments is described, 
including  experimental  localization  results for the  Sojourner Mars rover. 

1 Introduction 
In orcler to  navigato effectively  in the  environment  and  interact  with  the  surroundings,  mobile 
robots must hii,ve some rnethod by which to  determine  their  position  with  respect to  known 
locations in the  environment.  This is  called the loca,lixation problem. The  most  common 
and basic method for  performing  localization is through  dead-reckoning.  This  technique 
integrates  the  velocity  histlory of the  robot over time  to  determine  the  change  in  position for 
the  starting  location  (see, for example, [5, 391). Unfortunately,  pure  dead-reckoning  methods 
are  prone  to  errors  that grow without  bound over time, so some  other  method is  necessary 
to  periodically  update  the  robot  position  in  order  to  correct  this  error. 

It is common  to  combine  some  additional  localization  technique  such  as  triangulation 
from  landmarks or map  rr~atching  with  dead-reckoning  using  an  extended  Kalman  filter to  
probabilistically  update  the  robot  position.  In  this  paper, we describe a technique  that 
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performs  localization  infrecpently  to  update  the  position of the  robot. In order t o  perform 
localization, we compare a map  generated  using  the  robot’s  sensors at the  current  position 
(t,he locud m a p )  to a previously  generated map of the  environment  (the globad m a p )  (which 
rnay  be  constructed as the  robot  explores).  The  maps  are  matched  according  to a maximum- 
likelihood similarity measure.  The  best  relative  position  between  the  maps  is  found  using 
branch-and-bound  search  techniques  that  do  not  require  an  initial  estimate of the  robot po- 
sition t,o yield good  results,  only  bounds  on  the  search  space,  which  rnay  be of any  size.  This 
technique is general  enough to  use with  either a discrete,  landmark-based  map  representation 
or  an  occupancy  grid  model of t,he environment. We have  primarily  explored  the  application 
of these  techniques  to  three-dirnensional oc:cupancy grids  in  order t o  model  unstructured 
out,door  tmrain. 

The  measure  that we usc to  compare  the  tnaps is derived  from  previous  work  on  irnage 
matching  using  the  Hausdorff  distance  [20]. We have  reformulated  this  measure  in  terms of 
maximum-likelihood  estimation.  In  this  measure,  tmhe  likelihood of each  position is formulated 
as the  product, of the  probability  distribution  functions of the  distances  from  the  features  in 
the  local  map  to  the closest  featares  in  the  global  map,  with  an  additional  term  representing 
the  prior  probability of the posit,ion. This  probabilistic  measure  avoids  the  drawbacks of 
the  original  rnatching measure; which  include an  sharp  boundary  between  good  and  poor 
feature  tnatches and the  inability  to  incorporate  probabilistic  information,  while  retaining 
the  advantages,  which  include  robustness  to  outliers  and a global  search  technique  [30].  This 
measure  also  allows for both  suhpixel  localization  in  discretized  pose  spaces  and  accurate 
estimation of the  uncertainty  in t,he localization by fitting  the  likelihood  function wit,h a 
parameterized  surface. 

The  strakgy  tha,t we use to  locate  the  best  position is a hierarchical  divide-and-conquer 
dgorithm over  t,he space of possible  model  positions  (the pose  space) that  has  been  recently 
used  for  matchirig  image  edge maps [2 l ,  31, 341. We first  test  the  position given by dead- 
recltonirlg so that we have an  initial  position  to  compare  against.  The  pose  space  is  then 
divided  into  rectilinear  cells.  For  each cell in  the  space, we at tempt   to  prove  that, the cell 
cannot  contain a position  that is superior t o  the  best  one  that  has  been  found so far  using 
an efficient) bounding  mechanism.  For  any cell that  cannot  be  pruned,  the cell  is divided 
into  smaller cells and the process is repeated  recursively. The process stops dividing  the cells 
when  they  have  become  small  enough  to  represent  valid  hypotheses  or  by  some  other  robust 
stopping  criterion.  This is implemented  using a depth-first  search of the cell hierarchy. 

Our  motivation for this work  is the  Long  Range  Science  Rover  project  at JPL, which  has 
ckweloped the  Rocky 7 Mars rover prototype  [18].  Mars  rovers  need  increased  self-localization 
ability  in  order t,o perform  with  greater  aut)onomy  from  both  operators  on  Earth  and  from 
thc  lander  bringing  the rover to  Mars. For example,  the  Sojourner  Mars rover  was limited  to 
moving  short  distances  during  each  downlink cycle due  to posit1ional  uncertainty  and  could 
not  venture  far  from  the  lander.  The  method by which  dead-reckoning  errors were corrected 
for  Sojourner  was  through a human  operator overlaying a model of the rover on  stereo  range 
data   that  was computed  from  downlinked  imagery of the rover  taken by the  lander 1351. 

The  techniques  described  here  are effective  whenever a dense  range  map  can  be  generated 
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in  the  robot’s 1oc:al coordinate  frame  and we have a range  map of the  same  terrain  in  the 
frame of reference in which we wish to localize the  robot.  Alternatively, we could use discrete 
landmarks  such  as  rock  positions  to  perform  localization. We can  thus use  rover imagery, 
either  from  the  close-to-the-ground  navigation  cameras  or  from a rover mast  such as the  one 
on Rocky 7 (see  Figure 1) to  generate  the  local  map.  The  global  map  might  also  be  created 
from  the rover mast  or  navigation  imagery,  but  it  could  also  be  generated  from  imagery  from 
the  lander  (including  descent  imagery),  and  it is possible that  orbital  imagery  could  be  used, 
although we will not  have  orbital  imagery of sufficient resolution to  use  for  rover  localization 
with  sub-meter acc;uracy in  the  near  future  [27]. 

The 1ocalizat)ion techniques  described  here  are very  useful  in the  context of a M a s  mission. 
VC7hile operating in a small  area  containing  several  science  targets  (such as the  area  around 
the  lander  t)hat,  Sojourner  operated  in), we may  perform  localization  using  the  panoramic 
imagery  generated  at  the  center of the  area as our  global  map.  While  this is not  crucial 
when  the  lander  can see the rover, the  next-generation  Mars  rover will venture  away  from  the 
lander  and  it will be  equipped  with a mast  with  stereo  cameras  that will  allow it  to  generate 
panoramic  imagery of the  terrain.  This allows  localization to  be  performed by  matching  the 
panoramic  range  maps  generated  using  the  mast  imagery  to  maps  generated  from  either  the 
navigation  cameras, if possible,  or by using  the  mast  to  image  interesting  terrain, if necessary. 
These  techniques  can  also  be  used 011 traverses  between  sites  by  performing  localization at 
some  interval  in  order  to  update  the  position of the  rover. 

\4:e have  tested  these  techniques  using  real  and  synthetic  data.  The  synthetic  exper- 
iments  model a case  where  the  robot  performs  localization  using a discrete  set of known 
landmarks  in  the  environment.  These  experiments  indicate  that  accurate  localization  can  be 
achieved  by  searching a discretized  pose  space  through  the  use of subpixel  estimation  and 
that  the  uncertainty  in  the  localization  can  be  accurately  modeled by fitting  the  surface of 
the  likelihood  surface.  Our  application of these  techniques  to  real data creates  an  occupancy 
grid  representation of the  terrain  using  stereo  vision  [25],  since we are  concerned  primarily 
with  performing  localization  in  natural  terrain.  Experiments  matching  such  range  maps  from 
stereo  vision  have  been  performed  with  both  terrestrial data,  acquired  in  the ,JPL Mars Yard 
using the R,ocky 7 research rover [18],  and  imagery of Mars  acquired  by  the  Mars  Pathfinder 
lander  and  Sojourner rover [35]. The experiments  using MaKs imagery  validate  the use of 
these  techniques  to  perform  autonomous  localization  for  Mars  rovers  without  the  need to 
downlink  information  to  Earth. 

In  the following  section, we review  previous work on  robot  localization,  focusing on 
techniques that  perform  some  variation of map  matching  to  locate  the  robot.  Section 3 
describes  the  probabilistic  map  similarity  measure  that we use to  determine which  position 
of the  rohot, is the  most likely to  be correct.  Section 4 gives an  algorithm for searching  the 
space of possible  robot posit,iorls to  locate  the  position  that  maximizes  this  map  similarity 
measure.  This  section  also  discusses  the  application of these  techniques  to  robot  localization 
from  discrete  landmarks  and by matching  occupancy  maps. The techniques by which we 
perform  subpixel  estimation  in  discretized  pose  spaces  and  estimate  the  uncertainty  in  the 
localization  process  are given in  Section 5. The  experimental  results  that we have  achieved 
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Figure 1: Rocky 7 Mars rover prototype in the JPL Mars  yard with mast deployed. 
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with  real  and syrlt,llctic; data  are described  in  Section 6. Finally,  Section 7 summarizes  the 
paper  and gives some  concluding  remarks. We note  that  portions of this  work  have  been 
presented at recent  conferences [29, 30, 321. 

2 Previous work 

Mobile  robot,  localization is typically  performed by combining  the  results of dead-reckoning 
and  some  periodic  sensor-based  localizat]ion  technique,  for  example  with an  extended Kalrrlan 
filter.  Many  techniques  have  been  used to provide  the  periodic  sensor-based  localization. Of- 
ten  these  techniques  operate by determining  correspondence  between a set of sensed  features 
(such  as  landmarks) arid a known map of the  environment.  The  known  positions of the fea- 
tures in the  map,  together  with  the sensed  positions  relative to  the  robot allow the  robot's 
current  position  to  be  inferred. We give a brief  review of several  such  techniques  here. 

In some  cases,  the  sensor-based  techniques  operate  frequently, so that  the  robot moves 
a small  amount  between  localization  st)eps.  This  simplifies  the  problem,  because  the  deter- 
mination of the  feature  correspondences  can  be  treated as a tracking  problem,  rather  than 
searching  the  map  for  the  features.  The  drawback t,o this  formulation  is  that,  the  techniques 
must  operate  frequently  enough  to  prevent  the  tracker  from  losing  track of the  features. If 
the  tracker  makes a mistjake by specifying an incorrect  correspondence,  it  may  have a drastic 
effect on tlhe  localization  result.  Examples of techniques  based  on the  Kalman filter  include 
[a, 10, 19: 23, 431 

Many  other  methods  have  been  proposed  that  do  not  require  frequent  sensor  measure- 
ments. One such  method is to  locate  nearby  landmarks  and  to  perform a triangulation 
procedure  to  determine  the  position of the  robot.  Sugihara  addressed  the  problem  where  the 
relative  direction of the  landmarks  can  be  sensed,  but  not  the  distance  to  the  landmarks. 
He  developed an  algorithm for performing  localization  from  this data in O(n3)  time,  where 
n,  is the  number of landmarks.  Extensions of this  method  yielded  an O(n2 logn)  algorithm 
for a robot wit,h a compass  and  an O(n2)  algorithm for the case  where  the  landmarks  are 
distinguisha1)le.  Betke and  Gurvits [4] further  consider  the  case  where  the  landmarks  are 
distinguishable.  By  representing  the  landmark  positions as complex  numbers,  they  obtained 
a linear  tirne  algorithm  with a least-squares  error  criterion. 

,4nother  localizat,ion  technique is to  use a search  tree  [13, 171 to  perform  matching between 
featlures or landmarks  detected by a sensor  and  the  known  map.  Drumheller [Ill used this 
technique  to  perforrn  localization  using walls detected by sonar.  He  also  uses a sor~,u,r' barrier 
tes t  to  check  for inconsistencies  based  on  the  constraints of sonar  data.  Simsarian et al. [36] 
use a variation of this  technique  where  the  map is decomposed  into view-inua,ria,nt regzons, 
which  are  used to  guide  the  tree  search  and  reduce  the  cost of feature  matching.  Cox  [8]  also 
performed  matching  between  line  segments  in  the  plane,  although  detection  was  performed 
with a laser  range-finder. Cox assumed  that  the  robot would  have  rough  knowledge of its 
location ant1 t,hus  used an  iterative  least-squares  fitting  procedure  to  improve  the  position 
estimation. 

Elfes [12] used an  occupancy  grid  representation of the  environment.  Each cell in  the  grid 



was  given a scme  between -1 and 1, where -1 rcyresents  unoccupied, 1 represents  occupied, 
am1 values  in  Ixtween  represent  varying levels o f  certainty.  Localization  was  perforrned 
by locat,ing thr  position  between a local and a global  occupancy  grid  that  maximized  tlhe 
product of the  vdues  at  the  corresponding cells in  the  grids. 

Atiya  and  Hager [l] address a problem  where  the  landmarks  are  two-dimensional  points 
on a plane  (e.g.  vertical  edges  sensed  with  stereo  vision).  Correspondences  are  determined 
by matching  triples of sensed  landmarks  to  triples of map  landmarks, since  such  triples yield 
lengths arid angles that  are  invariant  to  the  robot  position.  Uncertainties  in  the  localization 
estimate are computed by intersecting  the  uncertainty  regions of the  landmarks, which are 
approxirnatecl by rectilinear  cells. 

-4 technique  t,hat  has  been used for rough  localization  in a large  environment is to  examine 
the  features  present  on  the  horizon  and  to use some  strategy  to  match  them  to  the known 
elevation map of the  terrain.  This  technique  can  provide  coarse  localization  in  very  large 
environments  when  there is no  knowledge of the  robot’s  position,  but  it  does  not  provide fine 
localization  for  positioning.  Talluri  and  Aggarwal [38] use the  shape of the  horizon  line  to 
search for the  position of a robot  in a digital  elevation map.  They first  perform  pruning  using 
geometrical  constraints  to  eliminate  many  positions  in a discretized  space of possible  robot 
positions. For positions  that  pass  the first  stage, a refinement  step  is  used  that  perforrns 
curve  matching  between  tlle  visible  horizon  and  the  estimated  horizon  line  computed  from 
the  elevation  map.  The best, match  is t>aken to  be  the  most likely robot  position.  St’ein  and 
Medioni [37] approximate  the  horizon  line by a polygonal  chain and  index a table  storing 
subsections of tlle  horizon as it would  be  seen  from  each  position  in a discretized  pose  space 
on the  map. A  verification step for the  indexed  matches  uses  geometric  constraints  to  select 
the  best  match. Thompson et  ad. [40] extract  and  match  features  on  the  horizon  and  other 
visible  hills and ridges.  Mat,ches  between  configurations of features  are  then  searched for 
in a map  that  has  been  pre-processed.  The  hypothesized  locations  are  then refined and 
evaluated. Cozrrlan and  Krotkov 191 also  detect  mountain  peaks on the  horizon. However; 
they  perform  the  search  in  the  discretized  space of positions  using  table  look-up  in  order  to 
maximize  the  posterior  probability of finding  t,he  correct  position. 

A  final  technique that  we will mention is to  perform  localization  by  matching a three- 
dimensional  map of the  terrain  near  the  robot  to a previously  generated  map.  This is the 
approach  that Kweon and  Kanade [22] take  in  order  to  generate a terrain  map by fusing 
multiple  local  maps.  They  first  generate a terrain  map  from  stereo  vision  using  the “loc:11s 
method”.  They  then  perform  matching  between  the  maps  in a two-stage  procedure.  First,  an 
r s t ina te  for the  relative  position is generated by ext,racting  and  matching  map  features  (high 
curvature  points).  The  estimate is then refined using a iterative  optimization  procedure. 
Zharlg [42] also  describes a, technique  that>  can  be  used  for  matching 3-D terrain  maps. His 
technique  uses an  initial  estimate of the  relative  position  between  two  sets of points  to 
iterativelv  improve  the  estimated  position. At each iteration,  the  technique  determines  the 
closest match for  each  point  and  updates  the  estimated  position  based  on a least-squares 
met,ric.  with some modifications to  increase  robustness. 
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3 Map  similarity  measure 

As we have  previously  noted, we perform  localizat,ion  by  matching a map  generated  at  the 
current  robot,  position  (the locad m q )  to  a previously  generated map of the  environment 
(the g l o b d  snap), which  may  he  generated by combining  previous  local  maps.  The  optimal 
position of the  robot  with  respect  to  the  global  map is located  using a maximum-likelihood 
similarity  measure for cornpa,ring  images  and maps [30]. This  similarity  measure  (which is 
described  below  in  more  detail)  yields a score  for  each  possible  position of the  local  map 
with  respect to   the global map, given a prior  probability  distribution of robot  positions  and 
a probability  distribution  function  (PDF) for the distlarlce from  the  features  in  the local 
map to  the closest, feature  in  the  global  map.  This  PDF  models the sensor  uncertainty  and 
the  possibility of missing a feature.  When  an  appropriate  PDF  is  used  to  model  the  sensor 
uncertainty,  this  measure is  robust, to  outliers, noise, and occluded  locations.  In  addition, 
it can be  applied  to  maps  consisting of sparse  landmarks  or  to a dense  occupancy  map 
representation. 

In  order  to  formulate  the  map  rnat>ching  problem  in  terms of maximum  likelihood  est)ima- 
tion, we must  have some set of measurements  that  are a function of the  robot  position. We 
use the  dist,a,nces  from  the  visible  features at the  current  robot  location  to  the closest  features 
in  the  global  representation of the  environment.  The  method by  which  these  distances  are 
computet1 is problem  dependent. We have  simplv  used  the  Euclidean  distance  for  both  land- 
marks a ~ l d  occ;upancy maps,  but  more  complex  distance  fmctions,  such as the  Mahalanobis 
distance  can l x  used  given the  requisite  covariance  information.  Since we search  for  the  best 
relative  position  between  these maps, these  distances  are  variables. 

Let  us  say  t,hat'  our  local map L consists of n features {II, ..., I n }  and  that   our global map 
G consists of r n  feat,ures {gl, .. . ,  g m } .  These  features  may  represent  individual  landmarks  or 
the ma,y represent cells in an occupancy  grid.  The  distance  between a feature 1, in  the  local 
map  and a feature gi in  the  global  map  when  the  local  map is at position X with  respect 
to the  glohal map is denoted d$ = dist(X(lJ,  si) ,  where X can be  thought of as a function 
that  transforms  features  in  the  local  map  into  their  corresponding  position  in  the  global 
map.  The  dist,ance  from a feat,ure  in  the local map to  the closest  feature  in  the  global map 
(at sornc relative  position X between  the  maps) is DX.  

While  these  distances  are  not  completely  independent, we ha,ve found  that rnodeling 
them as such  yields  very  good  results.  Recent work on  determining  the  probability of a False 
positive for  rnatJching  sparse  features  (such 3,s landmarks) [14, 161 and for matching  dense 
featmes  (such as edge  maps  a,nd  occupancy  grids) [15, 311 has  also  achieved  accurate  results 
when treating  the  features  independently. We thus  fornlulate  the  likelihood  function for the 
robot  position, X ,  as the  product of prior  probability of the  position  with  the  proba,bility 
distributions of these  distances: 
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For  convenience, we work in  the  InP(X)  domain, since  this  does  not  change  the  relative 
ordering of the  positions: 

The  position  yielding  the  maximum likelihood  is  taken to  be  the  position of the  robot,. 
The prior  probability  distribution of robot  positions  and  the  probability  distribution  function 
(PDF)  t,hat  is used  for  each  feature, p ( D X ) ,  together  determine  the  matching  measure  that is 
used  between  the  maps. If nothing is  known about  the  prior  distribution of model  positions, 
then  it  can  be  modeled  by a constant arid removed  from  the  measure.  On  the  other  hand, if 
we are  tracking  the  robot  position over time  (e.g.  with  an  extended  Kalman  filter), we will 
have  some  known  prior (a normal  distribution in the  case of the  EKF)  and  this will  aEect the 
computed  position of the  robot. We must  also  estimate  the  PDF of the  feature  distances. A 
two-valued PDF  with a constant  prior  yields a measure  equivalent to   the  Hausdorff  fraction 
(which  is a cornmonly  used  measure for image  matching [30]): 

This   PDF is simple  and  yields  good  results,  hut  does  not  accurately  model  the  distribution 
of distances  unless  they  are  uniformly  distributed  both  inside  and  outside of the specified 
error  bountlarv.  The acAual values of kl and kJ2 do not affect the  ranking of the  positions  (as 
long  as ki2 > 0) .  In practice, we have  used kl  = 0 and kz = 1. 

Better  results  can  be  achieved  through  the  use of a more  complex PDF  tha t  accurately 
models  the  sensor  uncertainty [30]. The  feature  localization  errors  can  often  be  accurately 
modeled by a normal  distribution. However, this  does  not  allow  for  outliers  in  the  local 
featlure map, which  have no corresponding  features  in  the  global  map.  The  use of a normal 
distribution  with a constant  additive  term  yields  an  accurate  model  for  cases  with  outliers 
[as] : 

In this  PDF, CJ is the  standard  deviation of the  feature  uncertainty  and k l  and 7Cz are con- 
stants  that  vary  with  the  frequency of outliers,  the  density of the  maps,  and  the  probability 
of missing a feature.  The  robotn  localization  is  insensitive  to  the  settings of these  constants, 
but a complete  arlalysis of the  values  these  constants  should  take  can  be  found  in [28]. 



4 Finding  the  most likely position 
Now that  the  sinlilarity  measure  between  the  maps  has  been  defined, we must  discuss how 
the  position  the  optimizes  the  similarity  measure is determined. A simple  hill-climbing 
technique  could  be  used,  but  such a method would  require  good  initial  estimate of the 
position of the  robot, which is not  always  available,  particularly if  we exercise the  localization 
techniques  infrequently. We describe a melthod to  search a bounded  pose  space  using a 
variat,ion of branch-antl-bound  sea,rch that  guarantees  that we locate  the  best  position  in 
a discretized  version of the  search  space.  For  some  map  representations  and  appropriate 
discretizations,  this will be  the  optimal  position over the  entire  search  space. A subsequent 
subpixel  localization  step  can  also  be  performed  to  gain  accuracy. Followirlg the  general 
discussion of the  search  strategy, we discuss the  application of this  search  strategy  to  maps 
consisting of landmarks  and  occupancy  grids  in  more  detail. 

4.1 Search  strategy 

W P  locatc  the  most likely robot,  position by adapting a multi-resolution  search  strategy  that 
has  been  applied to  image  matching using the Hausdorff'  distance [ 2 l ,  31, 341. We first 
test  the  nominal  position of the robot,  given by dead-reckoning  (or  any  other  position, if no 
initial  estimate is available) so tha t  we have an  initial  posit)ion  and  likelihood  to  compare 
against.  Next,  the  pose  space  is  divided  into  rectilinear cells. Each cell  is tested  using a 
conservative  test  to  determine  whetlher  it  could  contain a position  that  is  better  than  the 
best  position  found so far.  Cells that  cannot  be  pruned  are  divided  into  smaller  cells,  which 
are  examined  recursivelv.  When cells of a certain  (small) size are  reached,  the cells are 
tested  explicitly. For example,  when we compare  ocxupancy  grids  under  translation,  there 
is a natural  discretization of the  pose  space sllcll that  neighboring  positions move the  maps 
by  one  grid cell with  respect  to  each  other. For this  case, we stop  dividing  the cells  when 
they  contain a single  position  in  this  discretization  and we test  this  position  explicitly. For 
more  complex  examples, we may  set  some  threshold  on  the  minimum cell  size and  test  the 
center of the cell when  the cell size  is  below  t,he  threshold.  Subpixel  localization  estimates 
will be  useful  in  increasing  the  accuracy of the  localization  in  this  case  (see  Section 5). 

The key to  this  st,rategy is a quick method  to  test  the cells. A cell is  allowed to  pass  the 
test if it, does not,  cont,ain a good  pose,  but it, should  never  prune a cell that  might  contain a 
good pose, sinccl t,his  could  result  in the  best  position  being  missed. To determine  whether 
a particular cell C could  contain a pose that  is superior  to  the  best  one  found so far, we 
examine  the  pose c at, thc  center of the cell. In  order  to place a bound on the  best  position 
within  the cell, we compute  the  maxinlum  distance  between  the 1ocat)ion to  which a feature 
in  the  local  map is transformed  into  the  global  map by c and by any  other  pose  in  the cell. 
Denot'e  this  distance A,. If we treat  robot poses as functions  that  transform  positions in 
the  local  map  into  positions  in  the  global  map  then A, can  be  written: 
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Figure 2: A search strategy is used that recursively divides and prunes cells of' the search  space. 

For the  space of translations, A, is simply  the  distance  from  the  center of the cell to  
any corner of the cell,  since the difference  in the  translated  location of any  feature  in  the 
local map for any two  translations is simply  the difference between the  translations.  When 
rotations  are  considered, A, is  also  a  function of the local map. In this  case, A, can  be 
computed  as a function of rrlaximum orientation  change  between  the  center of the cell and  the 
corners of the cell. We concentrate on translations of the  robot, since the  robot  orientation 
can  often  be  determined  through  other  sensors.  Further  discussion of techniques  to  handle 
rotations in  such  a  I.)ranch-and-bomd  search  strategy can be  found  elsewhere [31, 341. 

To place  a bound on  the  qualitv of any  position  within  the  cell, wc bound  each of the 
dist,ances  that, can IN: achieved by features  in  the  local map over the cell and  then  propagate 
them  into the likelihood  function. 

0: is the  distance  from  the  ith  feature in the local map at the  position given by e, the 
center of the cell, to  the closest feature in the global map. 0: is a bound  on  the  distance 
that,  can  be  achieved for the  ith  feature  at any position  in  the cell C .  PF is the  maximum 
score that, the ith  feature of the local map can contribute  to  the likelihood  for  any  positlion 
in the cell'. 

A bound on the best,  overall  likelihood that  can be  found  at a position  in  the cell  is  given 
by : 

71 

'This assurnes that, the PDF is rnormt,onically non-increasing, which is true for any reasonable PDF,  since 
we desire closer rnatdles to  yield higher  scores. 



If this  likelihood  does  not  surpass  the  best that  we have  found so far,  then we can  prune 
t,he  entire cell from the search.  Otherwise  the cell  is divided  into  two cells of the  same size 
by  slicing it  along t,he longest  axis  and  the  process  is  repeated  recursively  until  all of the 
cells  havc been exhans td .  

4.2 Occupancy grids 
The search  strategy  described  above is well suited  to  matching  maps  that  are  represented 
by  occupancy  grids,  since  these  are  inherently  discretized.  The  space of translations of the 
robot is discretized at  the  same  resolution as the  maps  and  this yields a natural  resolution 
of the  search  space a t  which to  end  the recursive  division of the cells. 

The  simplest case is a grid  representation  where  each cell represents  either  occupied  or 
unocc:upie?d spac;e. This allows  for a fast  irnplementation of the  search, since  each 0,: can 
be  computed efficiently  over the  entire  global  rnap  by  computing  the  distance  transform of 
the  map.  The  distance  transform  measures  the  distance  from  each cell in a discretized map 
to  the closest  occupied cell [33], and  can  be  computed efficiently using  an  algorithm  that is 
linear in the size of the  map [6, 71. 

In  order  to  implement  this  procedure efficiently, we first compute  the  distance  transform 
of the  global  occupancy map. We can  then  compute a relative  index  into  the  distance 
transform  for  each  occupied cell in the local  rnap. The pose-space  cell  hierarchy  is  searched 
using a depth-first,  search  strategy. For each cell that  is examined, we loop  through  the 
prec:ornputetl indexes  into  the  distance  transform  (which  must  be offset by  position of the 
center of t)he  cell). For each  index, we get a distance  in  tlhe  global  map. We then use 
Equations (7 ) ,  (8), and (9) to  determine  whether  the cell can  be  pruned. 

For probabilistic  occupancy  grids,  the  strategy is slightly  more  complex t o  implement. 
A typical  representation will  use  scores  in the  range E-1,1] for each cell of the  grid.  In  this 
case, -1 represents  the  case  where  the cell is  known to  be  unoccupied, 1 represents  the  case 
where  the cell is  known to  he  occupied,  and  the  intermediate  states  represent  various levels 
of uncertainty. See, for example, [12]. We may, of course, map  such a grid  into a binary 
representation,  but t,his results  in  lost  information.  An  alternative  solution is to  use the 
product of the  occupancy  grid  scores  between  the  local map and  the global map at each 
position  as  the  likelihood sc:ore for  the  position [ la ] .  In  this  case, we can  examine a dilated 
version of the  global  map  in  order  to  decide  whether  to  prune a cell in  the  pose  space. Let, 
A c  he  the  ra,dius of the cell as defined  above and G(X) he tlhe  occupancy  grid  representing 
the  global  map. We can  write the dilation as follows: 

Gn,(X) = rnax G ( X ’ )  
i iX’-X~~<Ac 

Each  position X in the new  grid  thus  contains  the  maximum  score over a circle  centered at  
X with  radius  equal  to A,. 

Now  we sun1  over the  locations  in  the  local  map for  which we have  some  knowledge to 
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obtain  the  bound  on  the  likelihood for any  position  in  the  cell: 

If thc  sum is smaller  than  the  best  found so far,  then we can  prune  the cell. 
In  order t,o implement the  search efficiently we use a breadth-first  search of the cell 

hierarchy  in  the  pose  space,  making  sure  that  all of the cells  at] each level of the search  have 
the  same  dirnensions.  In  this  case, A, is  t,he same for each of the cells at any level of the 
search  tree and we can  compute  the  dilat,ion  described  above  once  for  each  such level. 

4.3 Landmarks 
These  techniques  can  also  be  easily  applied  to  matching  maps  consisting of geometric  land- 
marks. For example,  in  indoor  environments we may  be  able to detect  and  locate  vertical 
edges,  or we may use t,he  peaks of rocks  or other  landmarks  in  outdoor  terrain.  In  this  case, 
we can  use efficient, nearest-neighbor  searching  techniques  to  compute  each Df exactly. For 
example, we may  use  the  methods of Lipton  and  Tarjan [24] or  Bentley [3] to  locate  the 
nearest  landmark, if the  landmarks  are  represented  by  points,  and  the  distance  can  then  be 
computed  directly. 

These  techniques  can  be  made even more efficient at the  cost of a small  amount of 
accuracy by discretizing  tlle  landmark  positions. In this  case,  the  distances  can  be  computed 
using  tlle distmce  transform of the  map, aa described  above.  We  can  then use subpixel 
localization  techniques to  improve  the  accuracy over the  position  yielded by the  discretized 
search  space  (see  below).  Our  experiments  have  indicated that  the  amount of accuracy  lost 
is quite  small  when  using  this  technique. 

Once the  method of computing  each D,; is determined,  the  remainder of the  search 
strategy is same  as  described  above. 

5 Subpixel  localization and  uncertainty  estimation 
Using  this  probabilistic  formulation of the  localization  problem, we can  estimate  the un- 
certainty  in  t)he  localization,  in  terms of both  the  variance of the  estimated  positions  and 
the  probability  that a qualitative  failure  occurred.  In  addition, we can  perform  subpixel 
locxlization  in  the  discretized  pose  space by fitting a surface to  the  peak  that  occurs at the 
most likely robot  position. 

5.1 Subpixel  localization 
Lct us take  as  an  assunlption  that  the likelihood  function  approximates a normal  distribution 
in  the  neighborhood  around  the  peak  location.  Fit,ting  such a normal  distribution  to the 
computed  likelihoods  yields  both  an  estimated  variance  in  the  localization  estimate  and a 
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subpixel  estimate of the  peak  location.  While  the  approximation of the likelihood  function 
as a normal  distribution  may  not  be  acxurate  in  general,  it  does  yield a good fit, to  the local 
neighborhood  around  the  peak  and  our  experimental  results  indicate  that  very  accurate 
results  can  be  achieved  under  this  assumption. 

Now, since we actually  perform  our  computations  in  the  domain of the  natural  logarithm 
of'the  likelihood  function, we must fit these  values  with a polynomial of order 2. If  we assume 
independence in R: and y ,  then we have: 

In  order  to  estimate  the  parameters  that we are  interested  in ( xo ,  yo, a,, and oy), we 
project  this  polynomial  onto  the  lines :x; = x0 and y = yo, yielding: 

We now fit these  equations to  the :I; and y cross-sections of the  likelihood  function  at  the 
location of the  peak. If the  peak  in  the  discretized  search  space occ11rs at position ( x P ,  yT,), 
we fit P ( x ,  yo) to  the values at  the  surrounding 5 positions  along y = g p :  

The  least-squares fit, t o  a parabola ( y  = a,?? + bz + e )  with x; = {-2, - 1 , O ,  1, 2} yields: 

We can now  solve  for and 0, using: 

0 
= X P  - - a, 

1 
a, = ~ p z i  
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The  derivation  for vu and q l  is the  same,  except  that we project onto the  line z = xP.  The 
values of :co and y o  yield a subpixcl  localization  result,,  since  this is the  estimated  location 
of the  peak  in  the  likelihood  function. In addition, (T, and oY now  yield  direct  estimat,es  for 
the  uncertainty  in  the  localization  result. 

5.2 Probability of  failure 
In  addition  to  estimating t>he  uncert,ainty  in  the  localization  estimate, we can  use  the like- 
lihood  scores to  estimate  the  probability of a fdilure to  detect  the  correct  position of the 
rolmt.  This is particularly useful when  the  t,errain  yields few landmarks  or  other references 
for  localization  and  thus  many  positions  appear  similar  to  the  robot. 

For a tliscretizetl  search  space, we can  est,imate  this  probability of failure by summing 
the  likelihood  scores for the  peak selected as the  most likely robot  position  and  comparing 
to  the  sum of the  likelihood  scores that  are  not  part of this  peak.  In  practice, we can 
usually  estimate  the surn  under  the  peak by examining a small  number of values  around 
the  peak,  since  they  fall off very  quickly  (recall that  the  computed  values  are  the  logarithm 
of the likelihood  function). The  remainder of the values  can  also  be  estimated efficiently. 
Wllenever a cell in  tlhe  search  space  is  cmnsidered, we compute  not  only a bound  on  the 
maximum  score  that  can  be  achieved,  but,  also  an  estimate on the average  score that  is 
achieved by determining  the  score  for  the  center of the cell. If the cell  is pruned,  then  the 
sum is  incrcmentecl  by the  estimated score  multiplied by the size of the cell. In  practice,  this 
yields a very  good  estimate,  since cells with  large  scores  cannot  be  pruned  until  they  become 
small. We thus  get  good  estimates  when  the  score is significant and  when  the  estimate is 
not as good,  it is because  the  score is small  and  does  not  significantly affect the overall sum. 

Let Sp be  the surn  obtained for the  largest  peak  in  the  pose  space  and St be  the overall 
sum for the pose  space. We can  estimate  the  probability of correctness for the largest  peak 
as : 

6 Experiments 
We have  applied  these  tmhniques  in a number of experiments  using  both  synthetic  data, 
where  precise ground-truth was available for comparison,  and  real  range data from  stereo 
vision,  including  experimental  localization  results for the  Sojourner  rover 011 Mars. 

6.1 Synthetic landmarks 
We first  applied  these  techniques to  localization  using  landmarks  in  synthetic  experiments.  In 
these  experiments, we randomly  generated a synthetic  environment  containing  160  landmarks 
on a 256x256  unit  square.  Let 11s say that each  unit  is 10 cm  (though  the  entire  problem 
scales t,o an  arbitrary  size).  In  each  tlrial,  seven of the  ten  landmarks closest to  some  random 
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robot  location were considered to  be observed by the  robot  (with  Gaussian  error  in  both z 
and y with  st'andard  deviation o = 1 unit)  along  with 3 spurious  landmarks  not  included 
in  the  map.  Localization was then  performed  using  these  10  observed  landmarks  with  no 
knowledge of the  position of the  robot,  in  this  environment.  Over 100000 trials,  the  robot 
was correctly  localized  in 99.8% of the  cases,  with  an  average  error  in  the  correct  trials of 
0.356  units  in  each  dimension.  The  average  estimated  standard  deviation  in  the  localization 
using  the  techniques  from  the  previous  section was 0.427  units. 

Figure 3(a) shows  t,he  distribution of actual  errors  observed  versus  the  distribution  that 
we expect  from  the  average  standard  deviation  estimated  in  the  trials.  The close similarity 
of the  plots  indicates  that  the  estimated  standard  deviation  is a very good estimate of the 
actual  value. It, appears  that  this  estimate is slightly  smaller than  the  true value  since the 
frequency of the  observed  errors is slightly  above  the  curve at the  tails  and lower at  the  peak. 
However, the overall  similarity is  very  good. The  similarity  between  these  plots  also  validates 
t,he approximation of the  likelihood  function  as a normal  distribution  in t,he neighborhood 
of the  peak.  Figure 3(b) shows the  distribution of the  estimated  standard  deviations  in  this 
experiment.  It  can  be  observed  that  the  estimate is  very  consistent  between  trials,  since  the 
plot is  very strongly  peaked  near the location of the  average  estimate.  The  right tail of the 
plot is longer than  the left, h i l ,  indicating  that  when  errors  occur  they  are  more likely to 
overestimate  the  stantlard  deviation of the  error.  Taken  together,  these plots indicate that 
the  standard  deviation  estimates  are very  likely to  be  accurate for  each  individual  trial. 

We also  test)ed the  probability of correctness  measure  in  these  trials. The average  prob- 
ability of corrcctrless  computed for the  trials  that  resulted  in  the  correct  localization was 
,993, while the  average  probability of correctness  for  the  failures  was .643. The  probability 
of correctness  measure  thus  yields  information  that  can  be  used  to  evaluate  whether  the 
localization  result is reliable. 

6.2  Localization  using  stereo  range data 

In pract,i<:e, we have  performed  matching M w e e n  three-dimensional  occupancy  maps  to 
perform  localization for planetary  rovers. For these  occupancy  maps, we have  considered 
every  cell to  be  either  occupied  or  unoccupied  (with  no  in-between  states).  While  several 
methods  could  be  used  for  generating  such a representation, we have  used  stereo  vision  on 
the  Rocky 7 rover [18] to  compute  range  maps  using  the  techniques  that  have  been previously 
described I)y Ma,tthies [25, 261. 

Once a range  map  has  been  computed  from  the  stereo  imagery, we convert  it  into a 
voxel-based map  representJation. We first, rotate  the  data  such  that  it  has  the  same  relative 
oric:nt,ation as  the map we are  cornparing  it  to.  Here we operate  under  the  assumption  that 
the  orientation of the  robot is krlown through  sensors  other  than  vision (for exmlple,  both 
Sojourner  and  Rocky 7 h w e   r a k  gyros  and  accelerometers  and  Rocky 7 also  uses a sun  sensor 
for orientatlion  det>ermination [41]). The localization  techniques  can  also  be  generalized to  
determine  the  robot's  orientation. 

The next, step  is  to  bin  the  range  points  in a three-dimensional  occupancy  map of the 
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Figure 3 :  Distribution of' errors  and  estimated  standard  deviations  in  synthetic  landmark local- 
ization  experiment. (a) Comparison of estimated  distribution of localization  errors (solid line) to 
observed distribution of localization  errors (bar  graph).  (b)  Distribution of estimated  standard 
deviations in  the localization  estimate. 

surromdings at some  specified  scale. We eliminate  the  need  to  search over the possible 
translations of the  robot  in  the  x-direction by subtracting a local  average of the  terrain 
height  from  each cell (i.e. a high-pass  filter).  This  step is not  strictly  necessary,  and  it 
reduces  our  ability  to  determine  height  changes  in  the  position of the  robot,  but  it  also 
reduces  the  computation  time  that is required to  perform  localization. -4 subsequent  step 
can  be  performed  to  determine  the  robot  elevation, if desired.  Each cell in  the  occupancy  map 
that  contains a, range  pixel is said  to  be occupied, and  the  others  are  said tjo be unoccu,pied. 
Figure 4 gives an  example of a terrain  rnap  that was generated  using  imagery  from  the  Mars 
Pathfinder  mission. 

We have  tested  these  techniques  using  both  terrestrial  data  and  data from the  Mars 
Pathfinder  mission.  The  results  indicate  that  self-localization  can  performed  with  these 
techniques  approximately  as well as a human  operator,  without  requiring a downlink  cycle. 
In addition,  these  techniques  require only a few seconds to  perform  localization.  Experiments 
indicate  that  locxlization  can be performed  on a SPARCstation 20 in  under 5 seconds  with 
maps  discretized at 2 crrl resolution.  Sirnilar  experiments  performed  on-board  Rocky 7 
(Motorola 68060 CPU) require  approximatelv 20 seconds  once the  stereo range image  has 
bee~l  computed. 
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Figure 4: Terrain  map  generated  from  Pathfinder imagery. (a) Annotated composite image of 
Sojourner and rocks on Mars. (b) Terrain map generated  from  stereo imagery. 
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Figure 5: A sequence of  images used for testing the localization 

6.3 Tripod-mounted cameras 

techniques. 

We initially  tested  these  techniques  with  images  taken  in  the JPL Mars  Yard2  using  cameras 
mounted  on a tripod  at  approximately  the R.ocky 7  mast  height.  Figure 5 shows  a  set of 
images  that,  was  used  in  testing  the  localization  techniques.  The  set  consists of 12  stereo  pairs 
acquired a t  one  meter  intervals  along a, st,ra.ight,  line  with  approxirrntely  the  same  heading. 

In  these  t)ests, we determined  the  estimated  position  changes by finding  the  relative po- 
sition  between  each  pair of consecutive  images.  These  relative  positions  were  determined by 
matching  occupancy  maps  created  as  described  above.  The  localization  techniques yielded a 
qualitatively  correct  position  between  each  pair of consecutive  images.  The  average  absolute 
error in the  position  estimates  was 0.0342 meters  in  the  downrange  direction  and 0.0367 
meters  in  the  crossrange  direction  from  the  position  measured by hand. Much  of this  error 
is attributable to l ~ ~ m a n  error  in  determining  the  ground  truth for the  data.  

' See  h t t p :   / / r o b o t i c s .   j p l  .nasa.gov/tasks/scirover/marsyard 
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Additional  tests  were  performed 011 imagery  where  the  camera s,Ystem was  panned 25 
degrees  left  and  right,.  In  these  tests,  occupancy  maps  from  the  panned  images  were  matched 
to occupancy  maps for the  unpanned  images. All 24 trials  yielded  the  correct  qualitative 
result. The average  absolute  error  was  0.0138  meters  in  the  downrange  direction  and  0.0225 
meters  in  the  crossrange  direction. 

In  these  tests,  the  average  number of positions  examined  was  18.45% of the  total  number 
of posit'ions  in the discretized  search  space.  A  speedup of greater  than  5 was thus achieved 
through  the use of the efficient search  techniques. 

6.4 Pathfinder 
To validate  these  techniques for  use on  a  Mars  rover, we have  tested  them  using  data  from 
t,he Mars  Pathfinder  mission. A map of the  terrain  surrounding  the  Pathfinder  lander was 
first  generated  using  stereo  imagery.  For  each  position of Sojourner  at which we tested  the 
localization  techniques, we generated  an  occupancy  map of the  terrain  using  range  data  from 
Sojourner's  stereo  cameras.  This  local  map  was  then  compared  to  the  global  map  from  the 
lander. 

Unfortunately,  this  test  has  only  been  possible at a few locations  due  to  the  limited 
amount of' data  returned  to  Earth,  the lack of interesting  terrain  in  some of the  imagery we 
do have, and  the lack of a  comparison  value for most  positions  (except  those  where  Sojourner 
was imaged by the  lander  cameras). In  practice,  these  techniques  could  be exercised much 
more  frequently  since  they  would  not  require  downlinking  image  data  to  Earth  and  the 
comparison  value is only  necessary for testing. We envision a scenario  where  the  data  from 
the rover's  navigation  cameras,  which  would  be  operating  frequently  in  order  to  perform 
obstacle  detection,  would  be  used  to  perform  localization  whenever sufficient terrain was 
evident  in the  imagery.  In  addition,  the  imagery  from  mast  cameras  could  be used  for 
localization  when the  positional  uncertainty grows  beyond the  desired level and  the  imagery 
from  the  navigation  cameras  is  unsuitable. 

As an  example of the  data,  Figure 6 shows the  position of Sojourner  as seen from  the 
lander  and  the view  from  Sojourner  at  the  end of sol 213 of the  Mars  Pathfinder mission. 
Note  that  the  stereo  data  obtained  from  Sojourner is  not  as  good  as we hope  to achieve  in 
future missions.  Accurate  stereo  data is  achieved only for the  central  portion of the  Sojourner 
imagery  due  to  inaccurate  calibration of the fish-eye  lenses. The field-of-view that  we have 
to  work  with is thus  relatively  small.  However, we have  achieved  good  localization  results 
with  this  data. 

Table 1 shows the  results of localization  using the  techniques  described  in  this  paper 
versus the  localization  that  was  obtained by human  operator  through  overhying a rover 
model 011 the  stereo  data  obtained  from  imaging  the rover from  the  lander. For sol 42, we 
have  two  localization  results,  one  prior  to  and  one  after  a  turn by the rover. The  operator 
localization  was  performed  after  the turn.  

'A sol is a Martian day 
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Figure 6: Sojourner  on sol 2 1  (near “Souffle”). (a) Composite image from the  lander. (b) Image 
frOKX1 Sojourrler. 
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27 
42a 
42b 
72 

Operator 
2: Y 

3.28 -2.69 
4.34 -3.24 
3.32 -2.60 

-5.42 2.85 
-3.00 -1.86 
-3.00 -1.86 
-8.93 -1.57 

Localization 
5’ Y 

3.01  -2.64 
4.24  -3.27 
3.37 -2.65 

-4.98 2.75 
-3.02 -1.87 
-3.00 -1.87 
-8.99 -1.35 

Table 1: Comparison of‘ rover positions  determined by a human  operator overlaying a rover model 
on stereo  data of the rover and by the localization  techniques  described  in  this paper. 

The  results  show very  close agreement  between  our  techniques  and  the  operator  local- 
ization for four of the sols.  For  sols 4, 27, and  72,  there is some  disagreement.  Possible 
sources of error  include  inaccurate  calibration of either  the rover or  lander  cameras  and op- 
erator  error  in  performing  localization.  Manual  examination of the  maps  indicates  that  the 
localization  techniques  determine  the  qualitatively  correct  position  in  these  cases.  While no 
ground  truth  exists,  the  similarity of the  positions  estimated by these  techniques  and by the 
human  operator  indicate  that  these  techniques  can  perform  localization  approximately  as 
well as a  human  operator. 

7 Summary 
We  have  described  a  method for performing  self-localization for mobile  robots  through 
maximum-likelihood  matching of maps.  The  map of visible  features  at  the  robot’s  cur- 
rent  position is compared  to a global map  that  has  been  previously  generated  (possibly by 
combining  the  maps  from  the  robot’s  previous  positions).  The  best  relative  position  between 
the  maps is detected  using  a  global  branch-and-bound  search  technique  that  does not require 
an  initial  estirnate of the  robot  position.  The  search is performed  relative  to a maximum- 
likelihood map  similarity  measure  that  selects  the  robot  position at which the  maps  best 
agree. 

This  probabilistic  formulation of the  map  matching  problem allows the  uncertainty in 
the  localization of individual  map  features  to  be  treated  accurately in the  matching pro- 
cess. In  addition,  performing a polynomial fit to  the log-likelihood  function allows both 
subpixel  localization  to  be  performed  and  uncertainty  estimates to  be  computed, which  can 
he  propagated  in  a  position  tracking  mechanism  such  as  the  extended  Kalman  filter. 

Our  goal  in  the  design of these t,echniques  is to  provide  greater  autonomy for Mars  rovers. 
Through  the use of these  techniques we can  perform  self-localization  on  Mars  within  the con- 
fines of a  science  site  where  panoramic  stereo  imagery  has  been  taken  from  the  lander  or  from 
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the rover mast  cameras.  These  techniques  can  also  be  used  to  improve  position  estimation  on 
long  traverses by periodically  stopping  to  perform  localization  versus  the  previous  position 
and to image  the  terrain  ahead of the rover. The  application of these  techniques  to  data  from 
the  Mars  Pathfinder  mission  indicates  that we can  perform  autonomous  localization  with  ap- 
proximately  the  same  accuracy  as  a  human  operator  without  requiring  communication  with 
Earth.  

An area  that,  bears  further  study is t,he development of a localizabilit~y  measure for terrain 
maps in  order to  plan effective localization st,e.ps. In  the  future, we also plan to integrate 
these  techniques  into  an  integrated  navigation  methodology,  in  which a Kalman filter  is 
used to  synthesize  a  robot  position  estimate  from  a  variety of sensors  and  the  robot’s  path 
planner  interacts  with  the  Kalman filter and  the  localization  techniques  to  plan  when  and 
where loc:alization should  be  performed. 
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